OIL-INDUSTRY.RU

ISSN 0028-2448

HE THOE MOSRIACTBO

BPIUACK 1122

OCHOBAH Β 1920 ΓΟΔΥ

НАУЧНО-ТЕХНИЧЕСКИЙ И ПРОИЗВОДСТВЕННЫЙ ЖУРНАЛ NEFTYANOE KHOZYAYSTVO

НЕФТЯНОЕ ХОЗЯЙСТВО:

НОВАЯ ЭРА, ВЕК ВТОРОЙ

УЧАСТНИКИ

Геонавигация горизонтальных скважин

В.В. Кульчицкий¹, Д.Т.Н.

¹Межрегиональное научно-техническое общество нефтяников и газовиков имени академика И.М. Губкина

Адрес для связи: niibt@gubkin.ru

Ключевые слова: геонавигация, геонавигаторы, геокосмос, геореактор

DOI: 10.24887/0028-2448-2020-12-91-95

связи с 30-летием разработки месторождений Западной Сибири с использованием горизонтальных скважин (ГС) и признавая возрастающую роль ГС в освоении нефтегазовых месторождений, Межрегиональное научно-техническое общество (НТО) нефтяников и газовиков имени академика И.М. Губкина на своем XXI Пленуме объявило 2020 г. Годом геонавигации [1].

Специалисты по бурению наклонно направленных скважин, станций забойных телеметрических систем (ЗТС), телеметристы и инженеры геонавигационного сопровождения бурения скважин объединены профессиональным стандартом «Специалист по контролю и управлению траекторией бурения (геонавигации) скважин» [2]. Геонавигаторы приближают рубеж, когда в основном будут буриться горизонтальные скважины [3, 4]. Мировая практика показывает, что нефтяная отрасль является ведущим инвестором и потребителем наукоемких технологий, в том числе важнейшей геонавигационной.

ГС радикально изменили технику и технологию разработки нефтяных и газовых месторождений, позволили реализовать инновационные способы воздействия на продуктивный пласт, в том числе многостадийный гидравлический разрыв пластов (МГРП), увеличивающий площадь дренирования в сотни раз и дебит до 10 раз. Усложнение конструкции и многофункциональности скважины вызвало необходимость перехода к интеллектуализации, роботизации и в перспективе кибернетизации ГС [3–8].

Автор данной статьи создал научно-практические основы нового направления нефтегазового дела – геонавигации, т.е. управления траекторией ствола скважины в тесной взаимосвязи с исследованием околоскважинного пространства, обеспечивающим избирательное воздействие на продуктивный пласт [4–6] (рис. 1).

В начале 80-х годов XX века в НГДУ «Мегионнефть» внедрили технологию бурения пологих скважин, позволяющих увеличить межремонтный период работы глубиннонасосного оборудования и дебит продукции в зависимости от угла вскрытия пласта [9–11]. Полученный эффект подтвердил ожидаемый дебит, рассчитанный по методике В.С. Ев-

Рис. 1. Первый геонавигатор В.В. Кульчицкий управляет отклоняющей компоновкой с пульта телесистемы 3ИС-4 при бурении опытной скв. 817 Ермаковского месторождения (зенитный угол 77° на кровле пласта AB_1^{1+2})

ченко, и показал перспективность вскрытия нефтяного пласта горизонтальными скважинами [11]. Основные этапы 30-летней истории геонавигации представлены в табл. 1.

Отечественная высокотехнологичная геонавигация с использованием ЗТС с электромагнитным каналом связи (ЭМКС) при освоении нефтяных месторождений впервые была применена на Самотлорском месторождении при бурении и вводе в эксплуатацию 15.07.90 г. горизонтальной скв. 25738 с дебитом трудноизвлекаемой нефти, в 2–7 раз превыщающим дебит нефти соседних скважин [12]. Горизонтальный ствол протяженностью 209 м в пласте AB_1^{1+2} («рябчик»), дважды вскрыв нефтеносную толщу, радикально изменил систему разработки нефтяных месторождений, технику и технологию строительства и эксплуатации скважин (рис. 2) [3, 6], представив толщу в трехмерном пространстве.

Российские импортозамещающие технологии геонавигации кустового бурения ГС в Западной Сибири несущественно отставали от зарубежных (рис. 3). Качество геонавигации 24 ГС на Федоровском месторождении «Сургутнефтегаза», выполненной АОЗТ «Горизонт-Сервис», при

Таблица 1

т волица т	
Период	Мероприятия
1980-1984 г.	Разработана и внедрена технология бурения скважин с пологим вскрытием пласта (НГДУ «Мегионнефть», Мегионское УБР)
22.10.84 г.	Специалистом ПО «Нижневартовскнефтегаз» защищена первая кандидатская диссертация по бурению пологих скважин
1985-1988 г.	Адаптирована телесистема ЗИС-4 к условиям бурения, организована мобильная телеметрия исправительных работ (НИиОКР Миннефтепрома на месторождениях ПО «Нижневартовскнефтегаз»)
06-08.89 г.	Испытана первая заводская партия из 18 комплектов ЗИС-4 при бурении опытной многозабойной скважины (Учебный полигон Школы буровых кадров ПО «Нижневартовскнефтегаз»)
12.89 г.	Пробурена опытная скв. 817 с максимальным зенитным углом 77° на кровлю продуктивного пласта (Ермаковское месторождение ПО «Нижневартовскнефтегаз»)
1990-1991 г.	Построены и введены в эксплуатацию первые горизонтальные скв. 25738, 29297, 29299 и 20296 (Самотлорское месторождение ПО «Нижневартовскнефтегаз»)
11.10.92 г.	Учрежден АОЗТ «Горизонт-Сервис» для инжиниринга строительства ГС на месторождениях Западной Сибири (г. Нижневартовск с филиалом в г. Нефтеюганске)
11.04.93 г.	Разработан и внедрен мобильный геонавигационный комплекс с ЗТС, АМК «Горизонт» и станцией ГТИ (АОЗТ «Горизонт-Сервис»)
17.08.93 г.	Учреждена НПФ «Горизонты геофизического сервиса» для сервиса ЗТС и автономных геофизических комплексов (г. Нижневартовск)
11.04.94 г.	Учрежден СибНИПИ «Нефтяные горизонты» для проектирования строительства ГС (г. Нижневартовск)
1995 r.	Открыта Школа геонавигаторов для подготовки специалистов по геонавигации горизонтальных и пологих скважин (ЗАО «Горизонт-Сервис»)
8.10.96 г.	Учреждено НПП «Самарские горизонты» для разработки и серийного изготовления отечественных ЭТС (г. Самара)
25.11.96 r.	Учреждено НПП «Горизонт-Бурение» для инжиниринга ГС на месторождениях ООО «ЛУКОЙЛ-Западная Сибирь» (г. Когалым)
10.06.97 г.	Учреждено НПП «Ямалгеосервис» для инжиниринга ГС в Ямало-Ненецком АО (п.г.т. Тарко-Сале)
28.05.96 г.	Учреждено НПО «Горизонт-Сервис-Геонавигация» для инжиниринга ГС на нефтегазовых месторождениях (г. Тюмень, Москва)
22.11.2000 г.	Защищена первая докторская диссертация по геонавигационным технологиям (г. Москва)
2001 г.	Создана лаборатория геонавигации и интеллектуальных скважинных систем при спонсорской помощи НПО «Горизонт-Сервис- Геонавигация» (г. Москва, Губкинский университет)
05.07.2001 г.	Учрежден Научно-исследовательский и проектный центр газонефтяных технологий для цифровой интеграции геонавигации в геосупервайзинг бурения (г. Москва, Губкинский университет)
2008 г.	Издано первое учебное пособие по геонавигации (г. Москва)
2010 г.	Открыта программа для магистрантов по дисциплине «Геонавигация и интеллектуальные скважины» нефтегазового дела профиля подготовки «Бурение нефтяных и газовых скважин» в Губкинском университете (г. Москва)
13.07.17 г.	Утвержден профессиональный стандарт «Специалист по контролю и управлению траекторией бурения (геонавигации) скважин» (Министерство труда и соцзащиты России)
2019 г.	Внедрен геосупервайзинг бурового экипажа в едином пространстве штаб-вагона при геонавигации горизонтальных скважин Тайлаковского месторождения ПАО «Славнефть-Мегионнефтегаз» (г. Мегион, АО «НИПЦ ГНТ»)

Рис. 2. Пространственный профиль траектории первой горизонтальной скв. 25738

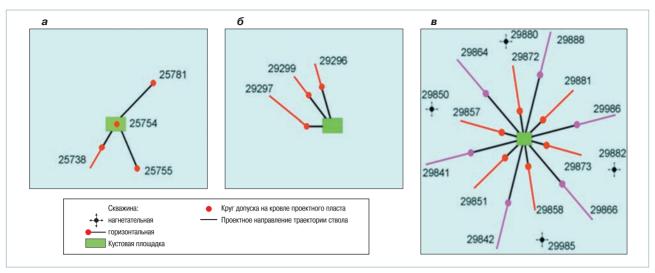


Рис. З. Первые кусты горизонтальных скважин в Западной Сибири:

а. б. в – куст соответственно № 2135, 2139 и 2042

применении высокоточной технологии турбороторного бурения с ЗТС-172 не уступало качеству импортной телеметрии с гидравлическим каналом связи, однако надежность российских телесистем была ниже из-за отсутствия фундаментальных научных разработок. К сожалению, за 30 лет не произошло ничего позитивного в области поддержки развития отечественной геонавигации. Все начинания по импортозамещению не получили развития из-за заорганизованности министерств и ведущих нефтяных компаний, а рентабельность малого и среднего бизнеса до 5 % не позволяет инвестировать долгосрочные НИОКР.

В 50-70-х годах XX века горизонтальные и многозабойные скважины при отсутствии телеметрических систем демонстрировали огромный вклад в это направление выдающегося инженера-геонавигатора А.М. Григоряна [13]. В настоящее время использование ГС стало экономической необходимостью при эксплуатации и разработке нефтяных и газовых месторождений. В последнее десятилетие нефтяные компании все больше внимания уделяют бурению ГС, составляющему более 1/2 общего объема бурения.

Инициированная 30 лет назад российскими инженерами разработка месторождений Западной Сибири с помощью ГС охватила все нефтегазовые провинции стра-

ны. Стратегия нефтяных компаний по повышению прироста добычи нефти основана на массовом применении ГС, использовании достижений науки и техники, особенно по цифровизации и искусственному интеллекту [6, 14]. Тенденция увеличения длины горизонтального ствола в продуктивном пласте в среднем до 4500 м к 2030 г. потребует замены буровых установок на более грузоподъемные, в том числе автоматизированные. В 2021 г. число ГС в нефтяной отрасли превысит 50 % всех пробуренных скважин и продолжит расти (рис. 4) [14].

Геонавигация становится высокотехнологичным сегментом разработки объектов сланцевой Рис. 5. Пространственная архитектура многозабойных скважин в керогеновых нефти. Выявленные закономерности осадкона- пластах: лили стратегию геонавигации скважин и про- вые прослои; 6 - МГРП

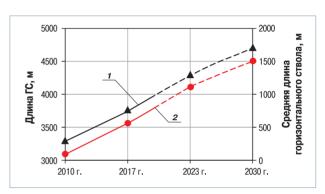
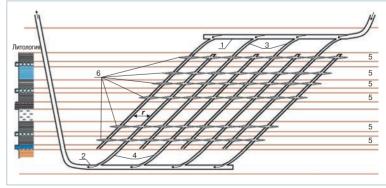



Рис. 4. Динамика средней длины горизонтальных стволов (1) и скважин (2)

странственную архитектуру горизонтальных стволов геореактора для пиролиза синтетической нефти из твердого органического вещества - керогена (рис. 5) [8].

Повышение сложности ГС, особенно по проектам разработки трудноизвлекаемых запасов нефти, в том числе керогена баженовской свиты, требует научно обоснованных технологических решений оптимизации бурения с помощью адаптивной системы на базе единой цифровой платформы, мультидисциплинарного и кросс-функ-

1, 2 – горизонтальный ствол соответственно нагнетательной и добывающей скважикопления отложений баженовской свиты опредены; 3, 4 – соответственно нисходящие и восходящие боковые стволы; 5 – керогено-

Таблица 2

таолица 2							
Год	Месторождение	Номер ГС	Заказчик	Пионерные технологии, рекорды и достижения	Длина горизонтального ствола, м		
1990	Самотлорское (ХМАО-Югра)	25738	«Черногорнефть»	Первая ГС в Западной Сибири	209		
1990	Самотлорское (ХМАО-Югра)	29297	«Черногорнефть»	Горизонтальный ствол длиной более 500 м	518		
1991	Нивагальское (ХМАО-Югра)	2645-Г	«Лангепаснефтегаз»	Нагнетательная ГС на юрские отложения	189		
1991	Советское (Томская область)	2017	«Томскнефть»	Первая ГС в Томской области	235		
1994	Самотлорское (ХМАО-Югра)	29873	«Черногорнефть»	Первая ГС по технологии fishbone в России	577		
1994	Приобское (ХМАО-Югра)	2213	НГДУ «Югранефть»	Вертикальный интервал 2295 м	232		
1995	Ефремовское (ХМАО-Югра)	620	«Юганскнефтегаз»	В коридоре 1 м безводная добыча	300		
1996	Самотлорское (ХМАО-Югра)	Куст 2042	«Черногорнефть»	Впервые радиальная система разработки трудноизвлекаемых запасов нефти кустом из 12 ГС	500		
1995	Федоровское (ХМАО-Югра)	5005	«Сургутнефтегаз»	Геонавигация с ЭМКС,ГИС автономным АМК «Горизонт» на трубах	310		
1996	Тевлино-Русскинское (ХМАО-Югра)	7290	«ЛУКОЙЛ-Западная Сибирь»	Рекордный дебит нефти 211 т/сут	350		
1996	Восточно-Таркосалинское (ЯНАО)	1231	«Пурнефтегазгеология»	Глубина по вертикали 3143 м, температура 114°C, давление 32 МПа	348		
1997	Восточно-Придорожное (ХМАО-Югра)	943	«ЛУКОЙЛ- Западная Сибирь»	Забуривание в противоположном азимуте с отходом на 150 м	146		
1997	Восточно-Таркосалинское (ЯНАО)	n	НК «Таркосаленефтегаз»	Боковой ствол газовой скважины с ЗТС-108	142		
1997	Нонг-Еганское (ХМАО-Югра)	826	«ЛУКОЙЛ- Западная Сибирь»	Отход до кровли пласта 1420 м, закрытый сетчатый фильтр-экран ЗСМФЭ-146	407		
1997	Уренгойское (ЯНАО)	201336	«Газпром»	Коридор ствола 0,6 м, дебит нефти 100 т/сут из оторочки пласта	335		
1998	Кущевское подземное хранилище газа (Краснодарский край)	158	«Газпром»	Геонавигация с использованием аэрированного бурового раствора с ЗТС-172	200		
1999	Восточно-Таркосалинское (ЯНАО)	16	«Пурнефтегазгеология»	Газовая ГС на сеноманские отложения	100		
1999	Восточно-Таркосалинское (ЯНАО)	2030	«Пурнефтегазгеология»	Электрический каротаж телесистемой с ЭМКС в процессе бурения	337		
2004	Юрхаровское (ЯНАО)	205	«Юрхаровнефтегаз»	Дебит газа более 5 млн м³/сут, хвостовик и НКТ равного диаметра 178 мм	607		
2004	Юрхаровское (ЯНАО)	106	«Юрхаровнефтегаз»	Газовая ГС на сеноманские отложения под акваторию Тазовской губы	727		
2003	Восточно-Казантипское (Крым)	15	«Черноморнефтегаз»	С морской платформы «Таврида» телесистема с ЭМКС на Азовском море	470		
2004	Арабляр-Море- Южное (Дагестан)	1	«Роснефть»	Роторное бурение с ЗТС-195 на 3 км под шельф Каспийского моря			
2019	Тайлаковское (ХМАО-Югра)	Куст № 81	«Славнефть- Мегионнефтегаз»	Геосупервайзинг геонавигации ГС буровым экипажем	946		

ционального взаимодействия специалистов подрядных предприятий, реализующих геонавигационные проекты [14]. Для эффективного разбуривания месторождений и повышения добычи нефти с переоснащением автоматизированными буровыми установками (БУ) необходимы системные исследования и производство отечественного геонавигационного оборудования, разработка цифровых технологий и программного обеспечения, подготовка специалистов цифровых профессий и организация геосупервайзинга на основе цифровой трансформации геонавигации с буровым супервайзингом и цифровой станцией геолого-технологических исследований в составе бурового экипажа [14]. История успеш-

ного внедрения импортозамещающих геонавигационных технологий российскими геонавигаторами под руководством автора представлена в табл. 2.

Тренд развития геонавигации – высокотехнологичное инновационное освоение недр стволами скважин значительной длины с большой площадью охвата. Не глубина скважины по вертикали, а протяженность ствола стала параметром мировых рекордов освоения недр. Значительное сопротивление горных пород к продвижению машин и механизмов, наличие больших давлений и температур предъявляют специфические требования к техническим средствам и технологиям, способным обеспечить потребности многих поколений в энергоресурсах [6].

Список литературы

- 1. *XXI Пленум* Центрального Правления НТО нефтяников и газовиков им. акад. И.М. Губкина. Нефтяное хозяйство. 2019. № 3. 7 с.
- 2. Приказ Минтруда России № 533н от 29.06.17 г. «Об утверждении профессионального стандарта «Специалист по контролю и управлению траекторией бурения (геонавигации) скважин». М.: Минюст России № 47412 13.07.2017 г.
- 3. *Кульчицкий В.В.* Геокосмос. М.: ИЦ РГУНГ имени И.М. Губкина, 2013. 146 с. 4. *Кульчицкий В.В.* Геонавигационные технологии проводки наклонно-направленных и горизонтальных скважин. М.: ВНИИОЭНГ. 2000. – 351 с.
- 5. *Кульчицкий В.В.* Теория и практика геонавигационных технологий бурения наклонно направленных и горизонтальных скважин: автореф. дис. ... д-ра техн. наук. М., 2000. 486 с.
- б. *Геонавигация* скважин / В.В. Кульчицкий, Г.А. Григашкин, А.С. Ларионов, А.В. Щебетов. М.: МАКС Пресс, 2008. 312 с.
- 7. Черевко М.А., Янин А.Н., Янин К.Е. Разработка нефтяных месторождений Западной Сибири горизонтальными скважинами с многостадийным гидроразрывом пласта. Тюмень-Курган: Зауралье, 2015. 286 с.
- 8. Пат. 2567918 РФ. Способ разработки многопластового неоднородного нефтяного месторождения / В.В. Кульчицкий, А.В. Щебетов, И.С. Гутман, А.В. Фомкин, А.А. Боксерман, М.И. Саакян; патентообладатель РГУ нефти и газа имени И.М. Губкина. № 2014148499/03; заявл. 12.02.14; опубл. 11.10.15.
- 9. Кульчицкий В.В. Проектирование специальных профилей и разработка технологии бурения наклонно-направленных скважин применительно к эксплуатации месторождений механизированными способами: автореф. дис. ... канд, техн. наук. Тюмень, 1984. 175 с.
- 10. *Сафиуллин М.Н., Захарченко Н.П., Кульчицкий В.В.* Опыт бурения наклонно-направленных скважин с малоинтенсивным набором кривизны // Нефтегазовая геология, геофизика и бурение. 1984. Вып. 10. С. 24–27.
- 11. *Разработка* нефтяных месторождений наклонно-направленными скважинами / В.С. Евченко, Н.П. Захарченко, Я.М. Каган, В.В. Кульчицкий. М.: Недра, 1986. 277 с.
- 12. Кульчицкий В.В. Выбор компоновок телесистемы с низом бурильной колонны для бурения горизонтальных скважин // Строительство нефтяных и газовых скважин на суше и на море. 1992. Вып. 11–12.
- 13. *Григорян А.М.* Вскрытие пластов многозабойными и горизонтальными скважинами. М.: Недра, 1969. 192 с.
- 14. *Рустамов И.Ф., Кулаков К.В., Кульчицкий В.В.* Цифровизация бурения скважин // ROGTEC. 2020. № 4. С. 24–33.

References

- 1. XXI Plenum of the Central Board of the NTO of oil and gas workers named after acad. Gubkin I.M. (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 3, p.7.
- 2. Order of the Ministry of Labor of Russia No. 533n dated June 29, 2017 "Ob utverzhdenii professional'nogo standarta "Spetsialist po kontrolyu i upravleniyu traektoriey bureniya (geonavigatsii) skvazhin" (On the approval of the professional standard "Specialist in the control and management of the trajectory of dilling (geosteering) of wells")
- 3. Kul'chitskiy V.V., *Geokosmos* (Geocosmos), Moscow: Publ. of Gubkin University, 2013, 146 p.
- 4. Kul'chitskiy V.V., *Geonavigatsionnye tekhnologii provodki naklonno-napravlen-nykh i gorizontal'nykh skvazhin* (Geosteering technologies for directional and horizontal wells), Moscow: Publ. of VNIIOENG, 2000, 351 p.
- 5. Kul'chitskiy V.V., Teoriya i praktika geonavigatsionnykh tekhnologiy bureniya naklonno napravlennykh i gorizontal'nykh skvazhin (Theory and practice of geosteering technologies for drilling directional and horizontal wells): thesis of doctor of technical science, 2000.
- 6. Kul'chitskiy V.V., Grigashkin G.A., Larionov A.S., Shchebetov A.V., *Geonavigatsiya skvazhin* (Well geosteering), Moscow: MAKS Press Publ., 2008, 312 p.
- 7. Cherevko M.A., Yanin A.N., Yanin K.E., *Razrabotka neftyanykh mestorozhdeniy Zapadnoy Sibiri gorizontal'nymi skvazhinami s mnogostadiynym gidrorazryvom plasta* (Development of oil fields in Western Siberia by horizontal wells with multistage hydraulic fracturing), Tyumen'-Kurgan: Zaural'e Publ., 2015, 286 p.
- 8. Patent RU 2567918 CI, *Development method of multilayer non-homogeneous oil deposit,* Inventors: Kul'chitskiy V.V., Shchebetov A.V., Gutman I.S., Fomkin A.V., Bokserman A.A., Saakjan M.I.
- 9. Kul'chitskiy V.V., Proektirovanie spetsial'nykh profiley i razrabotka tekhnologii bureniya naklonno-napravlennykh skvazhin primenitel'no k ekspluatatsii mestorozhdeniy mekhanizirovannymi sposobami (Design of special profiles and development of technology for drilling directional wells as applied to the exploitation of fields by mechanized methods): thesis of candidate of technical science, Tyumen', 1984.
- 10. Safiullin M.N., Zakharchenko N.P., Kul'chitskiy V.V., *Experience in drilling directional wells with a low-intensity set of curvature* (In Russ.), Neftegazovaya geologiya, geofizika i burenie, 1984, no. 10, pp. 24–27.
- 11. Evchenko V.S., Zakharchenko N.P., Kagan Ya.M., Kul'chitskiy V.V., *Razrabotka neftyanykh mestorozhdeniy naklonno-napravlennymi skvazhinami* (Development of oil fields by directional wells), Moscow: Nedra Publ., 1986, 277 p.
- 12. Kul'chitskiy V.V., Selection of telemetry systems with the bottom of the drill string for drilling horizontal wells (In Russ.), Stroitel'stvo neftyanykh i gazovykh skvazhin na sushe i na more, 1992, no. 11–12.
- 13. Grigoryan A.M., Vskrytie plastov mnogozaboynymi i gorizontal'nymi skvazhinami (Drilling-in using horizontal and multilateral wells), Moscow: Nedra Publ., 1969. 192 p.
- 14. Rustamov I.F., Kulakov K.V., Kul'chitskiy V.V., Well drilling digitalization, ROGTEC, 2020, no. 4, pp. 24–33.

Уважаемая Валентина Николаевна!

От имени Научно-технического общества нефтяников и газовиков имени академика И.М. Губкина сердечно поздравляю Вас и весь редакционный коллектив со 100-летием со дня основания журнала «Нефтяное хозяйство»!

Научно-технический журнал «Нефтяное хозяйство» является первым в стране и одним из самых авторитетных изданий нефтяной тематики. Журнал аккредитован ВАК Минобрнауки России, включен в Российский индекс научного цитирования, научную электронную библиотеку eLIBRARY.ru, входит в международную систему цитирования Scopus и Russian Science Citation Index.

В своих выпусках «Нефтяное хозяйство» освещает актуальные вопросы развития топливно-энергетического комплекса страны, знакомит читателей с отечественными научными достижениями в нефтегазовой отрасли.

Долгие годы совместной работы и сотрудничества связывают «Нефтяное хозяйство» и Межрегиональное научнотехническое общество нефтяников и газовиков имени академика И.М. Губкина. На страницах журнала освещается деятельность НТО нефтяников и газовиков, направленная на решение актуальных вопросов эффективного внедрения инновационных технологий и цифрового развития отечественной нефтегазовой промышленности.

Журнал «Нефтяное хозяйство» отличают высокий профессионализм, безупречная деловая репутация, ответственный подход к публикации материалов, что вызывает заслуженные доверие и уважение в нефтегазовом сообществе.

Желаем Вам и всему коллективу творческого долголетия, сохранения позиции неоспоримого лидера среди профессиональных изданий, неизменного читательского внимания, новых интересных проектов, легкого пера, свежих и ярких решений!

В.В. Кульчицкий Председатель Центрального правления НТО нефтяников и газовиков имени академика И.М. Губкина